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Abstract 

Calculat ion of the electrostatic Ewald energies of 
complex crystals requires much time. For such crys- 
tals, two methods,  suggested by the methods of  Ewald 
and Bertaut, are proposed to obtain rapid conver- 
gence of the series: the 'mult i-radii  method '  and the 
'overlapping method' .  These methods are appl ied  to 
the 'biochlorites ' ,  complex crystals formed by mixing 
biotite and chlorite layers. The Ewald energy of  1-1 
biochlorite (1 biotite layer-1 chlorite layer) with a 
value of 181.6 MJ mol -~ (eight tetrahedral cations T 
per molecule) is found to be approximately  equal to 
the sum of the energies of biotite: 74.6 MJ mol -~ (four 
T per molecule)  and chlorite: 107 MJ mol -l  (four T 
per molecule).  The energy of mixing (of biotite and 
chlorite layers) is thus nearly equal to 0, which is an 
indicat ion of the possible stability of  biochlorites. 

1. The 'biochlorites' 

Micas and chlorites are phyllosilicates: their structure 
is formed by the stacking of unit layers. Two tetrahe- 
dral sheets T, formed by tetrahedra (Si, AI)O4, and 
one octahedral  sheet O form a talc-like layer T-  O-  T. 
The mica structure consists of  talc-like layers alternat- 
ing with planes of cations (generally potassium ions). 
In the chlorite structure, the talc-like layers alternate 
with brucite-like layers. Interstratified structures with 
mixed mica and chlorite layers have been observed 
with t ransmission electron microscopy of  sufficient 
resolution (Page & Wenk, 1979; Knipe, 1981; l i j ima 
& Zhu, 1982; Olives, Amouric,  de Fouquet  & 
Baronnet, 1983; Veblen, 1983; Veblen & Ferry, 1983; 
Olives & Amouric,  1984; Maresch, Massonne & 
Czank, 1985; Olives, 1985b). They have generally 
been interpreted as intermediate states which appear  
during the t ransformat ion of mica into chlorite or 
chlorite into mica. Nevertheless, we have observed 
biotites and chlorites in a metamorphic  rock (phylli te 
of Brrgangon, Maures massif,  France),  both contain- 
ing mixed biotite and chlorite layers (Olives, 1985b; 
Fig. 1 of this paper).  Since biotites and chlorites were 
nearly at equi l ibr ium during metamorphism,  these 
mixing structures are probably  stable. These biotites 
and chlorites are in fact bioti te-chlori te inter- 
stratifications and we call these crystals 'biochlori tes '  
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Fig. 1. Images of biochlorites, taken with a transmission electron 
microscope of high resolution. The triangles, at the sides of the 
images, indicate the nature of the layers: one empty triangle = 
one plane of potassium ions (white fringe)= one unit biotite 
layer; one solid triangle = one brucite-like layer= one chlorite 
layer; the broad dark bands situated between any two triangles 
represent the talc-like layers. (a) Region of a biotite crystal; 
disordered x-y biochlorite (x biotite layers-y chlorite layers); 
x, y = 1 or 2; (b) region of a biotite crystal; ordered 1-1 bio- 
chlorite, with only one defect consisting of two consecutive 
chlorite layers; (c) region of a chlorite crystal; disordered 1-x 
biochlorite (1 biotite layer-x chlorite layers), x= 1 to 4; (d) 
region of a chlorite crystal; ordered 1-1 biochlorite (with two 
defects consisting of two consecutive chlorite layers). 
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for short (Olives, 1985a). In the biochlorite structure, 
a talc-like layer may alternate either with a plane of 
potassium ions (which gives a unit biotite layer) or 
with a brucite-like layer (which gives a unit chlorite 
layer). The sequence of biotite and chlorite layers is 
generally disordered. Nevertheless, the ordered 1-1 
biochlorite (layer sequence: 1 biotite layer-1 chlorite 
layer) is frequently observed (Olives & Amouric, 
1984; Olives, 1985a; Maresch et al., 1985; Olives, 
1985b; Fig. 1 of this paper). 

2. Ewald energy calculation methods 
for complex crystals 

2.1. Introduction 

Let us consider an ionic crystal in which the ions 
are considered as point charges, and denote by n the 
lattice vectors (n = nla 1 + n2a2+ n383; nl, 02, n 3 = 

integers), by s or t the positions of the ions of the 
origin cell n = 0, and by qs the charge of the ion s. 

Madelung (1918) calculated the electrostatic lattice 
potential 

• (x)= E E qdlln+s-xll (I) 
ii s 

n + s # x  

for a particular class of crystals (in which the ions 
may be grouped into electrically neutral parallel 
straight lines). 

Born & Land~ (1918) proposed the following 
expression for Eo the electrostatic energy per cell: 

Eo = =½X qtqb(t) 
t 

=½ X X X q, qt/lln+s-tll. (2) 
n s t 

n + s ~ t  

Ewald (1921) obtained a general formula for the 
electrostatic potential @(x) (of an arbitrary crystal 
lattice of point charges). Ewald's formula leads with 
the help of expression (2) of Born & Land6 to a 
general expression of the electrostatic energy per cell, 
which we shall call the 'Ewald energy', and denote 
by EE (see the next section). 

In a recent paper, we have discussed the exact 
relations which exist between EE, Eo and the 'limit 
electrostatic energy per cell' E (Olives, 1985c). 

2.2. Ewald" s method 

As noted above, Ewald's formula for the electro- 
static potential may be written in the energy form 

EE = E1 - E 2 +  E s ,  (3) 

with 

El=(1~ 2"try) E IF(h)l%xp (-'tr2h2/ H2)/h2 
h # O  

E~ = ( n / ~  ~/~) Z q~ 
s 

E3=½E E E (q, qt/]lu+s-t]]) 
n s t 

n + s ~ t  

x - (2 /~r  '/2) o e x p ( - a 2 ) d  (4) 

where g=vo lume  of the cell, h=  reciprocal-lattice 
vectors, H = an arbitrary parameter of inverse-length 
dimension, and 

F(h) = Y~ q, exp (27rib. s). 
s 

2.3. Bertaut' s method 

Bertaut (1952) generalized the preceding result 
using the same expression (3), where 

EI=(1/2¢rV) ~ [F(h)(p(h)[2/h 2 
h#0 

EE= 2"n" ~., q~ fo~ Up(u) du 
$ 

2 ¢ + o o  
= 2 Z  q, Jo [~o(h)]2 dh 

$ 

E3-½ E Z Z (qsqt/lln+s-tll) 
n s t 

n + s # t  

+ c o  

x f,.+s_t, 4~ru(u -IIn + s -  t II)p(u) du 

=½ Y, Z Z (q, qdlln+s-tll) 
n s t 

n + s ~ t  

x {1 -(2/~r)  $o °° [~(h)] 2 

x[sin (2~rhlln+s-tll)/h] dh}; (5) 

p and ~p are defined by 

p(u) = f~(x)~(x+u) dx 

(p(h) =~ (r(x) exp (2¢rih .x) dx. 

p(u) depends only on u = Ilull and ~o(h) on h = Ilhll. 
The density function tr is non-negative, of spherical 
symmetry and such that 

~(x) dx= I. 

Bertaut (1952) used the following particular case: 

or(x) = constant if llxll-< R 
tr(x) = 0 if Ilxll > R 

where 

R <- d/2, d = inf IIn+s-tll  
n + s ~ t  
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which leads to 

E,=(1/2,rV) E F(h)~(h) 2/h2, 
h#O 

E2=(3/5R ) y. q2, 
s 

E 3 = O, 
with 

¢(h) =3 (sin a - a  c o s  ot)/a 3, 

(6) 

a = 2~rRllhll. 

2.4. More appropriate methods for complex crystals 

The advantage of Bertaut's method (6) over 
Ewald's method is that it avoids calculation of the 
sum E3: the inequality condition on the radius R 
means that the (virtual) charge densities x-> 
q s c r ( x - n - s )  do not overlap each other, so that the 
'charge overlapping term' E 3 disappears. The best 
convergence for the sum E1 is obtained with the 
maximum value of R, that is, R = d/2. 

2.4.1. The 'multi-radii method'. For complex crys- 
tals, in which the distances between neighbouring 
ions may have very different values, the above condi- 
tion on R, based on the smallest interatomic distance 
d, is very constraining. Greater radii may be used (in 
order to obtain a more rapid convergence of the sum 
El) if we attribute to each ion situated at n + s  a 
(virtual) radius Rs; the different radii Rs being chosen 
as great as possible, under the condition that 

all the spheres with centre n + s and radius Rs do 
not overlap each other. (7) 

Following Bertaut (1952), we introduce the density 
functions 

o-s(x) = 3/4zrR~ ifllxll--- R~ 

%(x) = 0 if Ilxll > Rs 

and the (virtual) total charge density 

p(x) = E Y. q~O's(X- n - s ) .  
n s 

The Fourier transform of p can easily be obtained as 

~p(h) = Y Fs(h)~os(h) 
s 

where 

Fs(h) = q~ exp (2"n'ih. s) (8) 

and ~Os = ~cr~, i.e., in this case, 
3 q~(h) = 3 (sin a s -  % cos as)/a~, as = 2~rRsl[h[I. 

(9) 
Then the Fourier transform of the Patterson function 
P is 

I 

which leads to the term 

E,=(1/27rV) E E F~(h)~,s(h) 2/h2. (10) 
h~O s 

On the other hand, by introducing the functions 

P s t ( U )  : I  O ' s ( X ' + ' U ) O ' t ( X  ) d X ,  

the Patterson function may be written 

P(u) = Y. q~ p~(u) + 2  Y~ Y. q~qtp~t(u- n -  s+  t), 
s n s t 

n + s ~ t  

which leads to 

E 2 = ½ E  q£ I [p~(u)/Ilull]  du 
s 

=32 qURs 
s 

and 

(11) 

E3=0 (12) 

owing to the non-overlapping condition (7). 
The result of this method, expressed by (3), together 

with (10), (11) and (12), generalizes Bertaut's 
result (6). 

2.4.2. The 'overlapping method'. Another way to 
obtain a rapid convergence is to consider greater 
values of R in Bertaut's method: in this case (R > 
d/2) there is overlapping of the spheres (of radius 
R) centred at n + s, and the sum of the series E3 given 
by (5) must be calculated. This may easily and exactly 
be achieved in our case, because this sum is finite. 
Indeed, with the value 

p(u)=(3/87rR6)(2R3-3RZu/2+u3/8) i fu_<2R 

p(u)=O i f u > 2 R  

given by Bertaut (1952), we may calculate the integral: 
+oo 

4"tr ~ u(u-Iln+s-tll)p(u)du 
IIn+s-tll 

= 1 - ( 6 /5 )  IIn + s -  t l l / g  + (1 /2)( l ln  + s -  t l l / g ) 3  

- (3 /16) ( l ln  + s -  t l l /R  )4 +(1 /160)  

x ( l l n + s - t l l / R )  6 , 

and we  obtain 

E3 ± E  =2R ~_g.~qsqt 
n-t-s#t 

IIn+s-tll<2R 

(1 1 , ,  
x x.,st--+-x*~'-5 2 x.,s,+-f--~x.s,) (13) 

where 

x~s,-- I I n + s - t l l / R .  
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The result of this method is thus expressed by (3), 
where Ez and E2 are given by (6) and E3 by (13). As 
R is increased, the series E1 converges more rapidly, 
but, at the same time, the number of terms in the 
finite sum E3 increases. 

3. The Ewald energies of the biochlorites 

In order to study the stability of biochlorites, we have 
calculated the lattice energies of biotite, chlorite and 
1-1 biochlorite. A first approximation to the lattice 
energy is the electrostatic Ewald energy of the ionic 
lattice (the ions being considered as point  charges). 
This energy has been calculated by the preceding 
methods (§ 2). We have used the atomic coordinates 
given by Rayner (1974) for biotite and by Joswig, 
Fuess, Rothbauer, Takeuchi & Mason (1980) for 
chlorite. The basal parameters of biotite have been 
slightly modified in order to match those of chlorite. 
From these two structures, we have then built the 1-1 
biochlorite structure: the unit biotite layer and the 
unit chlorite layer have been considered as limited 
by two successive octahedral cation planes (of the 
talc-like layers); the stacking of the biotite and 
chlorite layers is such that all the 'talc-staggers' (stag- 
ger between the two tetrahedral sheets T of a talc 
layer T-O-T) are identical. The ionic charges for 
biotite are those of phlogopite, and the same charges 
are used for the talc-like layers of chlorite (which 
determines the cation charges in the brucite-like 
layers). We obtain the following Ewald energies: 
74.6 MJmo1-1 (for four tetrahedral cations T per 
molecule) for biotite [very similar to the values of 
Giese (1975) and Jenkins & Hartman (1979)]; 
107 MJmo1-1 (four T per molecule) for chlorite; 
181.6 MJ mol -~ (eight T per molecule) for 1-1 bio- 
chlorite (Olives, 1985a, b). We note that the lattice 
energy of 1-1 biochlorite is approximately equal to 
the sum of the lattice energies of biotite and chlorite. 
In other words, the energy needed to mix biotite and 
chlorite layers taken from a pure biotite and a pure 
chlorite crystal is nearly equal to 0. Approximately 
the same energy is needed to form a biochlorite, or 
to form separately a pure biotite crystal and a pure 
chlorite crystal. This result is an indication of the 
possible stability of biochlorites. 
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Fig. 2. Ewald energy of  biotite calculated up to [hi= 
sup ([hll, [h21, Ih3l); ( a )  Bertaut's method (6); (B) 'multi-radii 
method'; (C)  and (D) 'overlapping method',  with R = 0.75/~ 
for (C),  and R = 1/~ for (D). (a) Ihl = 1 to 10. The calculation 
time for [hi = 10 is about 10 rain for all the methods. Curves (B) 
and (C) cross each other between [hi=3 and 4. (b)Ih[= 10 to 
50. The calculation times are indicated near each point. 

4. Comparison of the different calculation methods 

Biochlorites are complex crystals containing a great 
number of ions per cell (44 ions per cell for biotite, 
72 for chlorite, 116 for 1-1 biochlorite). In the simple 
case of NaC1, the calculation of the partial sum of 
the series E1 up to h I = sup ([hl[, ]h2, [h31) = 5 gives 
the value of the energy with a relative precision of 
7 x 10-4; and this requires less than one second of 
calculation time. However, in the case of biotite (the 
most simple biochlorite), the calculation must be 

E 
(MJ mol-' i 

- i  81.5 1 ~ ..,.----- 

L 
~ ~ ~ ~ 3 5  m i n  

181 8[ 1;rain ! 
1 10 2'0 

2 h 15 min 

Fig. 3. Ewald energy of 1-1 biochlorite calculated up to Jh[ = 
sup (]hll, Ih2l, [h31), for [hi- 1 to 30; 'overlapping method' with 
R = 4/~. The calculation times are indicated near each point. 
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performed up to ]hi- 38 with Bertaut's method (6), 
in order to obtain the same relative precision; and 
this requires 8 h 45 min of calculation time. All the 
calculations were made on a 16-bit minicomputer 
(DEC PDP11/45). 

In the biochlorites, the smallest interatomic dis- 
tance d is the O-H distance of about 1 A,; thus, the 
radius R of Bertaut's method (6) must be about 0.5 A,. 
Because all other O-cation distances are greater than 
1 A., a more rapid convergence is obtained with the 
'multi-radii method' (of § 2.4.1), as shown in Fig. 2 
for the case of biotite. With the 'overlapping method' 
(§ 2.4.2) we may choose R > 0.5/~; the convergence 
is similar to that of the 'multi-radii method' if R = 
0.75 A, and it is more rapid if R > 0.75 A,(Fig. 2a). 
This is also illustrated in Fig. 3, in the case of 1-1 
biochlorite: with R = 4/~, the series E! converges very 
rapidly and the finite sum E3 requires only 15 min of 
calculation time. Higher values of R give a better 
convergence for El, but a longer calculation time 
for E 3 . 
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Abstract 

The q, scan of the forbidden 003 reflection of Zn, 
measured with an automatic single-crystal diffrac- 
tometer, using Cu Ka radiation, is compared with 
the calculated and plotted Umweganregung pattern 
for Cu Kal and Cu Ka2 radiation. The intensities of 
the Umweganregung peaks are calculated on the basis 
of the kinematical theory. When the Lorentz factors 
for both scans involved in the measurement (the 0 
scan and the ~O scan) are taken into account, excellent 
agreement between measured and calculated 
intensities is obtained. The width of the Umwegan- 
regung peaks can be explained by replacing the 
reciprocal-lattice points by spheres in reciprocal 
space. 

Introduction 

In the last few years interest in weak high-order 
reflections measured with X-rays of short wavelength 
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has increased in structure analysis. Multiple diffrac- 
tion systematically increases the weak intensities and 
falsifies the intensity data sets. The influence of the 
simultaneous reflections on weak intensities must 
therefore be investigated thoroughly, using the 
experimental arrangement of the automatic single- 
crystal diffractometer employed in structure analysis. 

Since Renninger (1937) carried out a systematic 
investigation into the multiple diffraction 
phenomenon in the q,-scanning pattern of the 222 
reflection of diamond, many papers on this topic have 
been published. An extensive bibliography of this 
subject is given by Post (1975, 1976) and in papers 
cited therein. Recently the computer program 
UMWEG was published by the author (Rossmanith, 
1985); this program is based mainly on the 
geometrical considerations of Cole, Chambers & 
Dunn (1962). 

Simultaneous diffraction occurs when three or 
more reciprocal-lattice points lie simultaneously on 

O 1986 International Union of Crystallography 


